# Pt. 60, App. A-4, Meth. 6A $18.0\quad Tables,\, Diagrams,\, Flow charts,\, and\,\, Validation\,\, Data$ Figure 6A-1. Sampling train. Figure 6A-2. CO, Absorber METHOD 6B—DETERMINATION OF SULFUR DI-OXIDE AND CARBON DIOXIDE DAILY AVERAGE EMISSIONS FROM FOSSIL FUEL COMBUSTION SOURCES Note: This method does not include all of the specifications (e.g., equipment and supplies) and procedures (e.g., sampling and analytical) essential to its performance. Some material is incorporated by reference from other methods in this part. Therefore, to obtain reliable results, persons using this method should have a thorough knowledge of at least the following additional test methods: Method 1, Method 2, Method 3, Method 5, Method 6, and Method 6A. 1.0 Scope and Application 1.1 Analytes. #### Pt. 60, App. A-4, Meth. 6B | Analyte | CAS No. | Sensitivity | |-----------------------------------|------------|-----------------------------------------------------------------------------------| | Sulfur dioxide (SO <sub>2</sub> ) | 7449-09-05 | $3.4 \text{ mg SO}_2/\text{m}^3$<br>(2.12 × 10 <sup>-7</sup> lb/ft <sup>3</sup> ) | | Carbon dioxide (CO <sub>2</sub> ) | 124–38–9 | N/A | - $1.2\,$ Applicability. This method is applicable for the determination of $SO_2$ emissions from combustion sources in terms of concentration (ng/dscm or lb/dscf) and emission rate (ng/J or lb/l06 Btu), and for the determination of $CO_2$ concentration (percent) on a daily (24 hours) basis. - 1.3 Data Quality Objectives. Adherence to the requirements of this method will enhance the quality of the data obtained from air pollutant sampling methods. #### 2.0 Summary of Method $2.1\,$ A gas sample is extracted from the sampling point in the stack intermittently over a 24-hour or other specified time period. The SO\_2 fraction is measured by the barium-thorin titration method. Moisture and CO\_2 fractions are collected in the same sampling train, and are determined gravimetrically. ## 3.0 Definitions. [Reserved] ## 4.0 Interferences Same as Method 6, Section 4.0. ## 5.0 Safety - 5.1 Disclaimer. This method may involve hazardous materials, operations, and equipment. This test method may not address all of the safety problems associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to performing this test method. - 5.2 Corrosive Reagents. Same as Method 6, Section 5.2. #### 6.0 Equipment and Supplies Same as Method 6A, Section 6.0, with the following exceptions and additions: - 6.1 The isopropanol bubbler is not used. An empty bubbler for the collection of liquid droplets, that does not allow direct contact between the collected liquid and the gas sample, may be included in the sampling train. - 6.2 For intermittent operation, include an industrial timer-switch designed to operate in the "on" position at least 2 minutes continuously and "off" the remaining period over a repeating cycle. The cycle of operation is designated in the applicable regulation. At a minimum, the sampling operation should include at least 12, equal, evenly-spaced periods per 24 hours. - 6.3 Stainless steel sampling probes, type 316, are not recommended for use with Method 6B because of potential sample contami- nation due to corrosion. Glass probes or other types of stainless steel, e.g., Hasteloy or Carpenter 20, are recommended for long-term use. Note: For applications downstream of wet scrubbers, a heated out-of-stack filter (either borosilicate glass wool or glass fiber mat) is necessary. Probe and filter heating systems capable of maintaining a sample gas temperature of between 20 and 120 °C (68 and 248 °F) at the filter are also required in these cases. The electric supply for these heating systems should be continuous and separate from the timed operation of the sample pump. ## 7.0 Reagents and Standards Same as Method 6A, Section 7.0, with the following exceptions: - 7.1 Isopropanol is not used for sampling. - 7.2 The hydrogen peroxide absorbing solution shall be diluted to no less than 6 percent by volume, instead of 3 percent as specified in Methods 6 and 6A. - 7.3 If the Method 6B sampling train is to be operated in a low sample flow condition (less than 100 ml/min or 0.21 ft³/hr), molecular sieve material may be substituted for Ascarite II as the $CO_2$ absorbing material. The recommended molecular sieve material is Union Carbide $\frac{1}{16}$ inch pellets, 5 A°, or equivalent. Molecular sieve material need not be discarded following the sampling run, provided that it is regenerated as per the manufacturer's instruction. Use of molecular sieve material at flow rates higher than 100 ml/min (0.21 ft³/hr) may cause erroneous $CO_2$ results. - 8.0 Sample Collection, Preservation, Transport, and Storage - 8.1 Preparation of Sampling Train. Same as Method 6A, Section 8.1, with the addition of the following: - 8.1.1 The sampling train is assembled as shown in Figure 6A-1 of Method 6A, except that the isopropanol bubbler is not included. - 8.1.2 Adjust the timer-switch to operate in the "on" position from 2 to 4 minutes on a 2-hour repeating cycle or other cycle specified in the applicable regulation. Other timer sequences may be used with the restriction that the total sample volume collected is between 25 and 60 liters (0.9 and 2.1 ft<sup>3</sup>) for the amounts of sampling reagents prescribed in this method. - 8.1.3 Add cold water to the tank until the impingers and bubblers are covered at least two-thirds of their length. The impingers and bubbler tank must be covered and protected from intense heat and direct sunlight. If freezing conditions exist, the impinger solution and the water bath must be protected. NOTE: Sampling may be conducted continuously if a low flow-rate sample pump [20]